3 years ago

The Iterative Transformation Method. (arXiv:2003.07971v1 [math.NA])

Riccardo Fazio
In a transformation method, the numerical solution of a given boundary value problem is obtained by solving one or more related initial value problems. Therefore, a transformation method, like a shooting method, is an initial value method. The main difference between a transformation and a shooting method is that the former is conceived and derive its formulation from the scaling invariance theory. This paper is concerned with the application of the iterative transformation method to several problems in the boundary layer theory. The iterative method is an extension of the T{\"o}pfer's non-iterative algorithm developed as a simple way to solve the celebrated Blasius problem. This iterative method provides a simple numerical test for the existence and uniqueness of solutions. Here we show how the method can be applied to problems with a homogeneous boundary conditions at infinity and in particular we solve the Sakiadis problem of boundary layer theory. Moreover, we show how to couple our method with Newton's root-finder. The obtained numerical results compare well with those available in the literature. The main aim here is that any method developed for the Blasius, or the Sakiadis, problem might be extended to more challenging or interesting problems. In this context, the iterative transformation method has been recently applied to compute the normal and reverse flow solutions of Stewartson for the Falkner-Skan model [Comput. \& Fluids, {\bf 73} (2013) pp. 202-209].

Publisher URL: http://arxiv.org/abs/2003.07971

DOI: arXiv:2003.07971v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.