3 years ago

Capsule GAN Using Capsule Network for Generator Architecture. (arXiv:2003.08047v1 [cs.CV])

Kanako Marusaki, Hiroshi Watanabe
This paper presents Capsule GAN, a Generative adversarial network using Capsule Network not only in the discriminator but also in the generator. Recently, Generative adversarial networks (GANs) has been intensively studied. However, generating images by GANs is difficult. Therefore, GANs sometimes generate poor quality images. These GANs use convolutional neural networks (CNNs). However, CNNs have the defect that the relational information between features of the image may be lost. Capsule Network, proposed by Hinton in 2017, overcomes the defect of CNNs. Capsule GAN reported previously uses Capsule Network in the discriminator. However, instead of using Capsule Network, Capsule GAN reported in previous studies uses CNNs in generator architecture like DCGAN. This paper introduces two approaches to use Capsule Network in the generator. One is to use DigitCaps layer from the discriminator as the input to the generator. DigitCaps layer is the output layer of Capsule Network. It has the features of the input images of the discriminator. The other is to use the reverse operation of recognition process in Capsule Network in the generator. We compare Capsule GAN proposed in this paper with conventional GAN using CNN and Capsule GAN which uses Capsule Network in the discriminator only. The datasets are MNIST, Fashion-MNIST and color images. We show that Capsule GAN outperforms the GAN using CNN and the GAN using Capsule Network in the discriminator only. The architecture of Capsule GAN proposed in this paper is a basic architecture using Capsule Network. Therefore, we can apply the existing improvement techniques for GANs to Capsule GAN.

Publisher URL: http://arxiv.org/abs/2003.08047

DOI: arXiv:2003.08047v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.