3 years ago

Unsupervised Pidgin Text Generation By Pivoting English Data and Self-Training. (arXiv:2003.08272v1 [cs.CL])

Ernie Chang, David Ifeoluwa Adelani, Xiaoyu Shen, Vera Demberg
West African Pidgin English is a language that is significantly spoken in West Africa, consisting of at least 75 million speakers. Nevertheless, proper machine translation systems and relevant NLP datasets for pidgin English are virtually absent. In this work, we develop techniques targeted at bridging the gap between Pidgin English and English in the context of natural language generation. %As a proof of concept, we explore the proposed techniques in the area of data-to-text generation. By building upon the previously released monolingual Pidgin English text and parallel English data-to-text corpus, we hope to build a system that can automatically generate Pidgin English descriptions from structured data. We first train a data-to-English text generation system, before employing techniques in unsupervised neural machine translation and self-training to establish the Pidgin-to-English cross-lingual alignment. The human evaluation performed on the generated Pidgin texts shows that, though still far from being practically usable, the pivoting + self-training technique improves both Pidgin text fluency and relevance.

Publisher URL: http://arxiv.org/abs/2003.08272

DOI: arXiv:2003.08272v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.