3 years ago

On the Goulden-Jackson-Vakil conjecture for double Hurwitz numbers. (arXiv:2003.08043v1 [math.AG])

Norman Do, Danilo Lewański

Goulden, Jackson and Vakil observed a polynomial structure underlying one-part double Hurwitz numbers, which enumerate branched covers of with prescribed ramification profile over , a unique preimage over 0, and simple branching elsewhere. This led them to conjecture the existence of moduli spaces and tautological classes whose intersection theory produces an analogue of the celebrated ELSV formula for single Hurwitz numbers.

In this paper, we present three formulas that express one-part double Hurwitz numbers as intersection numbers on certain moduli spaces. The first involves Hodge classes on moduli spaces of stable maps to classifying spaces; the second involves Chiodo classes on moduli spaces of spin curves; and the third involves tautological classes on moduli spaces of stable curves. We proceed to discuss the merits of these formulas against a list of desired properties enunciated by Goulden, Jackson and Vakil. Our formulas lead to non-trivial relations between tautological intersection numbers on moduli spaces of stable curves and hints at further structure underlying Chiodo classes. The paper concludes with generalisations of our results to the context of spin Hurwitz numbers.

Publisher URL: http://arxiv.org/abs/2003.08043

DOI: arXiv:2003.08043v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.