3 years ago

Cahn-Hilliard-Brinkman systems for tumour growth. (arXiv:2003.08314v1 [math.AP])

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg
A phase field model for tumour growth is introduced that is based on a Brinkman law for convective velocity fields. The model couples a convective Cahn-Hilliard equation for the evolution of the tumour to a reaction-diffusion-advection equation for a nutrient and to a Brinkman-Stokes type law for the fluid velocity. The model is derived from basic thermodynamical principles, sharp interface limits are derived by matched asymptotics and an existence theory is presented for the case of a mobility which degenerates in one phase leading to a degenerate parabolic equation of fourth order. Finally numerical results describe qualitative features of the solutions and illustrate instabilities in certain situations.

Publisher URL: http://arxiv.org/abs/2003.08314

DOI: arXiv:2003.08314v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.