3 years ago

The Hopf algebroid structure of differentially recursive sequences. (arXiv:2003.08180v1 [math.AG])

Laiachi El Kaoutit, Paolo Saracco
A differentially recursive sequence over a differential field is a sequence of elements satisfying a homogeneous differential equation with non-constant coefficients (namely, Taylor expansions of elements of the field) in the differential algebra of Hurwitz series. The main aim of this paper is to explore the space of all differentially recursive sequences over a given field with a non-zero differential. We show that these sequences form a two-sided vector space that admits, in a canonical way, a structure of Hopf algebroid over the subfield of constant elements. We prove that it is the direct limit, as a left comodule, of all spaces of formal solutions of linear differential equations and that it satisfies, as Hopf algebroid, an additional universal property. When the differential on the base field is zero, we recover the Hopf algebra structure of linearly recursive sequences.

Publisher URL: http://arxiv.org/abs/2003.08180

DOI: arXiv:2003.08180v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.