3 years ago

Impact of transient seepage on slope stability of earth-rock dams with geomembrane barrier defects

Weijun Cen, Dengjun Li, Hui Wang
The water–air two-phase unsaturated seepage theory was employed to analyse the transient seepage field of an earth-rock dam with an impervious geomembrane barrier during rapid drawdown of the reservoir. Discussed is the resulting seepage behaviour of the dam after locations of defects in geomembranes and hydraulic conductivity of dam materials were changed. In addition, the unsaturated soil strength theory was used to calculate the anti-sliding safety factor of the upstream dam slope during drawdown. The uncertainty of effective stress parameters of dam materials was considered, and the Monte Carlo method was employed in the reliability analysis of the stability of the upstream dam slope. The results indicate that the location of defects has a significant influence on the initial phreatic surface distribution and the seepage flux mainly depends on the hydraulic conductivity of dam materials. Geomembranes with defects on the dam surface have an apparent hysteresis effect on the descending of the phreatic surface when the reservoir level drops, which causes a great decrease in the stability of the upstream dam slope. Matric suction significantly affects the stability of the upstream dam slope, while the air phase has little effect on slope stability when geomembranes are placed on the upstream surface of the dam.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.