3 years ago

Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws

Zhen Gao, Li-Li Fang, Bao-Shan Wang, Yinghua Wang, Wai Sun Don

In this work, the characteristic-wise alternative formulation of the seventh and ninth orders conservative weighted essentially non-oscillatory (AWENO) finite difference schemes are derived. The polynomial reconstruction procedure is applied to the conservative variables rather than the flux function of the classical WENO scheme. The numerical flux contains a low order term and high order derivative terms. The low order term can use arbitrary monotone fluxes that can enhance the resolution and reduce numerical dissipation of the fine scale structures while capturing shocks essentially non-oscillatory. The high order derivative terms are approximated by the central finite difference schemes. The improved performance in terms of accuracy, essentially non-oscillatory shock capturing and resolution for the complex shocked flow with fine scale structures in the classical one- and two-dimensional problems is demonstrated. However, the inclusion of the high order derivative terms is prone to generate Gibbs oscillations around a strong discontinuity and might result in a negative density and/or pressure. Therefore, a positivity-preserving limiter [Hu et al. J. Comput. Phys. 242 (2013)] is adopted to ensure the positive density and pressure in the shocked flows with extreme conditions, such as Mach 2000 jet flow problem.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S004579302030092X

DOI: 10.1016/j.compfluid.2020.104519

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.