3 years ago

Enhancing Image Processing Architecture using Deep Learning for Embedded Vision Systems

R. Udendhran, M. Balamurugan, A. Suresh, R. Varatharajan

In recent years, the success and capabilities of embedded vision have showed up in embedded applications. The embedding of vision into electronic devices such as embedded medical applications is being driven by the availability of high-performance processors, integrating with deep learning algorithms, as well as advances in image processing technology. But, including image processing in embedded vision systems need huge amount of computational capabilities even to process a single image to detect an object and it's extremely challenging to implement in embedded systems. Implementing deep learning algorithms and testing it on a task specific data set could provide enhanced results. In this paper, an approach for enhancing image processing architecture using deep learning for embedded vision systems is proposed and analysed. Implementing deep learning algorithms and testing it on embedded vision yielded effective results.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S0141933120301642

DOI: 10.1016/j.micpro.2020.103094

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.