3 years ago

Coupling effects of self-limiting lithiation, reaction front evolution and free volume evolution on chemical stress in amorphous wire-based electrodes

Yong Li, Qi Zhang, Kai Zhang, Fuqian Yang

The lithiation of silicon (Si) involves the evolution of reaction front, self-limiting lithiation, and visco-plastic deformation. During the lithiation of crystalline Si, solid-state amorphization occurs to lower Gibbs free energy, and lithiated Si-electrode in lithium-ion battery is mainly present in amorphous phase. In this work, we develop a viscoplastic constitutive relationship for the lithiation-induced deformation of amorphous materials from the theory of free volume, and establish a chemo-mechanical model for the lithiation-induced deformation of a-Si electrode from the frameworks of phase-field theory, stress-assisted thermal activation process and the viscoplastic constitutive relationship. The chemo-mechanical model takes into account three important chemophysical phenomena of the self-limiting lithiation, evolution of reaction front/interphase zone and plastic flow. Using the newly developed chemo-mechanical model, we investigate the lithiation-induced deformation of an a-Si nanowire. The numerical results reveal that both the stress-assisted thermal activation process and plastic flow retard the motion of the reaction front from free surface to the center of the a-Si nanowire. The annihilation and creation of free volume significantly reduces the Cauchy stress.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S0378775320303190

DOI: 10.1016/j.jpowsour.2020.228016

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.