3 years ago

A high-throughput genome-integrated assay reveals spatial dependencies governing Tcf7l2 binding

Tomasz Szczesnik, Lendy Chu, Joshua WK Ho, Richard Sherwood
Predicting where transcription factors bind in the genome from their in-vitro DNA binding affinity is confounded by the large number of possible interactions with nearby transcription factors. To characterise the binding logic for the Wnt effector transcription factor Tcf7l2, we have developed a high-throughput screening platform in which thousands of 99-bp synthesised DNA sequences are inserted into a specific genomic locus through CRISPR/Cas9-based homology-directed repair, followed by measurement of Tcf7l2 binding by DamID. Using this platform at two genomic loci in mouse embryonic stem cells, we show that while the binding of Tcf7l2 closely follows the /in-vitro/ motif binding strength and is influenced by local chromatin accessibility, it is also strongly affected by the surrounding 99-bp of sequence. The presence of nearby Oct4 and Klf4 motifs promote Tcf7l2 binding, particularly in the adjacent ~20 to 50-bp nearby and oscillating with a 10.8-bp phasing relative to these cofactor motifs, which matches the turn of a DNA helix. This novel high-throughput DamID assay provides a powerful platform to determine local DNA sequence grammars that causally influence transcription factor binding in controlled genomic contexts.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.