3 years ago

Switching Logistic Maps to Design Cycling Approaches Against Antimicrobial Resistance

Cesar Parra-Rojas, Sorin Olaru
Antimicrobial resistance is a major threat to global health and food security today. Scheduling cycling therapies by targeting phenotypic states associated to specific mutations can help us to eradicate pathogenic variants in chronic infections. In this paper, we introduce a logistic switching model in order to abstract mutation networks of collateral resistance. We found particular conditions for which unstable zero-equilibrium of the logistic maps can be stabilized through a switching signal. That is, persistent populations can be eradicated through tailored switching regimens. Starting from an optimal-control formulation, the switching policies show their potential in the stabilization of the zero-equilibrium for dynamics governed by logistic maps. However, employing such switching strategies, deserve a specific characterization in terms of limit behaviour. Ultimately, we use evolutionary and control algorithms to find either optimal and sub-optimal switching policies. Simulations results show the applicability of Parrondo's Paradox to design cycling therapies against drug resistance.

Publisher URL: http://biorxiv.org/cgi/content/short/2020.03.17.995928v1

DOI: 10.1101/2020.03.17.995928

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.