3 years ago

Use of indirect calorimetry to evaluate utilization of energy in lactating Jersey dairy cattle consuming diets with increasing inclusion of hydrolyzed feather meal

D.L. Morris, J.V. Judy, P.J. Kononoff

A study using indirect calorimetry and 12 lactating multiparous Jersey cows (53 ± 23 d in milk at the beginning of the experiment; mean ± standard deviation) was conducted to evaluate the utilization of energy in cattle consuming diets containing increasing hydrolyzed feather meal (HFM). A triplicated 4 × 4 Latin square design with 35-d periods (28-d adaption and 4-d collections) was used to compare 4 different dietary treatments. Treatments contained (DM basis) HFM at 0% (0HFM), 3.3% (3.3HFM), 6.7% (6.7MFM), and 10.0% (10HFM). Diets were formulated such that HFM replaced blood meal and nonenzymatically browned soybean meal. With increasing HFM, linear increases were observed for dietary NEL content (1.61, 1.64, 1.69, and 1.70 ± 0.042 Mcal/kg of DM for 0HFM, 3.3HFM, 6.7MFM, and 10HFM, respectively), and the efficiency of converting ME to NEL (0.708, 0.711, 0.717, and 0.719). Apparent total-tract digestibility of CP linearly decreased with increasing HFM (63.4, 61.1, 59.9, and 58.6 ± 1.46% for 0HFM, 3.3HFM, 6.7MFM, and 10HFM, respectively), whereas long-chain fatty acid digestibility increased with increasing HFM (77.2, 77.7, 78.5, and 80.6 ± 1.30%). With increased inclusion of HFM, fecal N excretion increased (199, 230, 239, 237 ± 12.1 g/d for 0HFM, 3.3HFM, 6.7MFM, and 10HFM, respectively), whereas urinary N excretion decreased (166, 151, 155, and 119 ± 14.8 g/d). Increasing the concentration of HFM resulted in a quadratic effect on DMI (19.6, 20.2, 20.3, and 19.1 ± 0.79 kg/d for 0HFM, 3.3HFM, 6.7MFM, and 10HFM, respectively) and milk yield (31.7, 32.0, 31.9, and 29.7 ± 1.32 kg/d). Increasing HFM linearly decreased the milk protein concentration (3.34, 3.29, 3.23, and 3.23 ± 0.158 for 0HFM, 3.3HFM, 6.7MFM, and 10HFM, respectively) and yield (1.05, 1.05, 1.02, and 0.96 ± 0.040 kg). The inclusion of HFM did not affect energy-correct milk yield (average of 39.3 ± 1.54). Results of this study suggest that HFM can increase dietary NEL content compared with blood meal and nonenzymatically browned soybean meal and maintained energy-corrected milk yield; however, feeding HFM at greater than 6.7% of diet DM decreased DMI, and protein availability may have been reduced with increased HFM, leading to a linear decrease in milk protein concentration and yield.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.