3 years ago

Pure CuBi2O4 Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi2O3/CuO Grown by Pulsed Laser Deposition

Pure CuBi2O4 Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi2O3/CuO Grown by Pulsed Laser Deposition
Ronen Gottesman, Angang Song, Igal Levine, Maximilian Krause, A. T. M. Nazmul Islam, Daniel Abou-Ras, Thomas Dittrich, Roel van de Krol, Abdelkrim Chemseddine

A new method for enhancing the charge separation and photo‐electrochemical stability of CuBi2O4 photoelectrodes by sequentially depositing Bi2O3 and CuO layers on fluorine‐doped tin oxide substrates with pulsed laser deposition (PLD), followed by rapid thermal processing (RTP), resulting in phase‐pure, highly crystalline films after 10 min at 650 °C, is reported. Conventional furnace annealing of similar films for 72 h at 500 °C do not result in phase‐pure CuBi2O4. The combined PLD and RTP approach allow excellent control of the Bi:Cu stoichiometry and results in photoelectrodes with superior electronic properties compared to photoelectrodes fabricated through spray pyrolysis. The low photocurrents of the CuBi2O4 photocathodes fabricated through PLD/RTP in this study are primarily attributed to their low specific surface area, lack of CuO impurities, and limited, slow charge transport in the undoped films. Bare (without protection layers) CuBi2O4 photoelectrodes made with PLD/RTP shows a photocurrent decrease of only 26% after 5 h, which represents the highest stability reported to date for this material. The PLD/RTP fabrication approach offers new possibilities of fabricating complex metal oxides photoelectrodes with a high degree of crystallinity and good electronic properties at higher temperatures than the thermal stability of glass‐based transparent conductive substrates would allow.

Publisher URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201910832

DOI: 10.1002/adfm.201910832

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.