3 years ago

Locality Preserving Projection Based on Euler Representation

Tianhang Long, Yanfeng Sun, Junbin Gao, Yongli Hu, Baocai Yin

Locality preserving projection (LPP) is a widely used linear dimensionality reduction method, which preserves the locality structure of the original data. Motivated by the fact that kernel technique can capture nonlinear similarity of features and help to improve separability between nearby data points, this paper proposes locality preserving projection model based on Euler representation (named as ELPP). This model first projects the data into a complex space with Euler representation, then learns the dimensionality reduction projection with preserving locality structure in this complex space. We also extend ELPP to F-ELPP by replacing the squared F-norm with F-norm, which will weaken the exaggerated errors and be more robustness to outliers. The optimization algorithms of the two models are given, and the convergence of F-ELPP is proved. A large number of experiments on several public databases have demonstrated that the two proposed models have good robustness and feature extraction ability.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S1047320320300468

DOI: 10.1016/j.jvcir.2020.102796

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.