5 years ago

Targeting Anti-TGF-β Therapy to Fibrotic Kidneys with a Dual Specificity Antibody Approach.

Goodearl AD, Doyle KJ, Nikkel AL, Davis-Taber RA, Grinnell CM, Gopalakrishnan M, Salte KM, Sun V, Zhu CZ, Olson LM, Chhaya M, Giamis AM, Lacy SE, Cole TB, McGaraughty S, Luo Y, Preston GM
Targeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury. In a mouse unilateral ureteral obstruction (UUO) model of renal fibrosis, injury induced significant upregulation of FnEDA in the obstructed kidney. Using dual variable domain Ig (DVD-Ig) technology, we constructed a molecule with a moiety to target FnEDA and a second moiety to neutralize TGF-β After systemic injection of the bispecific TGF-β + FnEDA DVD-Ig or an FnEDA mAb, chemiluminescent detection and imaging with whole-body single-photon emission computed tomography (SPECT) revealed significantly higher levels of each molecule in the obstructed kidney than in the nonobstructed kidney, the ipsilateral kidney of sham animals, and other tissues. In comparison, a systemically administered TGF-β mAb accumulated at lower concentrations in the obstructed kidney and exhibited a more diffuse whole-body distribution. Systemic administration of the bispecific DVD-Ig or the TGF-β mAb (1-10 mg/kg) but not the FnEDA mAb attenuated the injury-induced collagen deposition detected by immunohistochemistry and elevation in Col1a1, FnEDA, and TIMP1 mRNA expression in the obstructed kidney. Overall, systemic delivery of a bispecific molecule targeting an extracellular matrix protein and delivering a TGF-β mAb resulted in a relatively focal uptake in the fibrotic kidney and reduced renal fibrosis.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28827403

DOI: PubMed:28827403

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.