3 years ago

A Heterologous Model of Thrombospondin Type 1 Domain-Containing 7A-Associated Membranous Nephropathy.

Helmchen U, Hoxha E, Koch-Nolte F, von Spiegel H, Zahner G, Endlich N, Meyer-Schwesinger C, Stahl RAK, Kotb AM, Tomas NM
Thrombospondin type 1 domain-containing 7A (THSD7A) is a target for autoimmunity in patients with membranous nephropathy (MN). Circulating autoantibodies from patients with THSD7A-associated MN have been demonstrated to cause MN in mice. However, THSD7A-associated MN is a rare disease, preventing the use of patient antibodies for larger experimental procedures. Therefore, we generated antibodies against the human and mouse orthologs of THSD7A in rabbits by coimmunization with the respective cDNAs. Injection of these anti-THSD7A antibodies into mice induced a severe nephrotic syndrome with proteinuria, weight gain, and hyperlipidemia. Immunofluorescence analyses revealed granular antigen-antibody complexes in a subepithelial location along the glomerular filtration barrier 14 days after antibody injection, and immunohistochemistry for rabbit IgG and THSD7A as well as ultrastructural analyses showed the typical characteristics of human MN. Mice injected with purified IgG from rabbit serum that was taken before immunization failed to develop any of these changes. Notably, MN developed in the absence of detectable complement activation, and disease was strain dependent. In vitro, anti-THSD7A antibodies caused cytoskeletal rearrangement and activation of focal adhesion signaling. Knockdown of the THSD7A ortholog, thsd7aa, in zebrafish larvae resulted in altered podocyte differentiation and impaired glomerular filtration barrier function, with development of pericardial edema, suggesting an important role of THSD7A in glomerular filtration barrier integrity. In summary, our study introduces a heterologous mouse model that allows further investigation of the molecular events that underlie MN.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28814510

DOI: PubMed:28814510

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.