3 years ago

Statistical Methods for Modeling Time-Updated Exposures in Cohort Studies of Chronic Kidney Disease.

Hsu JY, Xie D, Anderson AH, Jepson C, Yang W, Feldman HI, Shou H, Chronic Renal Insufficiency Cohort (CRIC) Study Investigators, Landis JR, Roy J
When estimating the effect of an exposure on a time-to-event type of outcome, one can focus on the baseline exposure or the time-updated exposures. Cox regression models can be used in both situations. When time-dependent confounding exists, the Cox model with time-updated covariates may produce biased effect estimates. Marginal structural models, estimated through inverse-probability weighting, were developed to appropriately adjust for time-dependent confounding. We review the concept of time-dependent confounding and illustrate the process of inverse-probability weighting. We fit a marginal structural model to estimate the effect of time-updated systolic BP on the time to renal events such as ESRD in the Chronic Renal Insufficiency Cohort. We compare the Cox regression model and the marginal structural model on several attributes (effects estimated, result interpretation, and assumptions) and give recommendations for when to use each method.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28818846

DOI: PubMed:28818846

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.