5 years ago

Cysteines and N-glycosylation Sites Conserved Among all Alphaherpesviruses Regulate Membrane Fusion in Herpes Simplex Virus Type 1 Infection.

Chouljenko VN, Naderi M, Rider PJF, Kousoulas KG, Brylinski M, Bergeron S
Neurotropism is a defining characteristic of alphaherpesvirus pathogenicity. Glycoprotein K (gK) is a conserved virion glycoprotein of all alphaherpesviruses that is not found in other herpesvirus subfamilies. The extracellular amino terminus of gK has been shown to be important in the ability of the prototypic alphaherpesvirus HSV-1 to enter neurons via axonal termini. Herein, we determined the role of the two conserved N-linked glycosylation (N48 and N58) sites of gK in virus-induced cell fusion and replication. We found that N-linked glycosylation is important to the regulation of HSV-1-induced membrane fusion, since mutating N58 to alanine caused extensive virus-induced cell fusion. Due to the known contributions of N-linked glycosylation to protein processing and correct disulfide bond formation, we investigated whether the conserved extracellular cysteine residues within the amino terminus of gK contributed the regulation of HSV-1-induced membrane fusion. We found that mutation of C37 and C114 residues led to a gK-null phenotype characterized by very small plaque formation and drastic reduction in infectious virus production, while mutation of C82 and C243 caused extensive virus-induced cell fusion. Comparison of N-linked glycosylation and cysteine mutant replication kinetics identified disparate effects on infectious virion egress from infected cells. Specifically, cysteine mutations caused defects in the accumulation of infectious virus in both the cellular and supernatant fractions, while glycosylation site mutants did not adversely affect virion egress from infected cells. These results demonstrate a critical role for the N glycosylation sites and cysteines for the structure and function of the amino terminus of gK.IMPORTANCE We have previously identified important entry and neurotropic determinants in the amino terminus of HSV-1 glycoprotein K (gK). Alphaherpesvirus-mediated membrane fusion is a complex and highly regulated process that is not clearly understood. gK and UL20, which are highly conserved across all alphaherpesviruses, play important roles in the regulation of HSV-1 fusion in the context of infection. A greater understanding of mechanisms governing alphaherpesvirus membrane fusion is expected to inform the rational design of therapeutic and prevention strategies to combat herpesviral infection and pathogenesis. This work adds to the growing reports regarding the importance of gK to alphaherpesvirus pathogenesis and details important structural features of gK that are involved in gK-mediated regulation of virus-induced membrane fusion.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28835497

DOI: PubMed:28835497

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.