3 years ago

Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics: Effect of Franck–Condon States

Optically Controlled Electron-Transfer Reaction Kinetics and Solvation Dynamics: Effect of Franck–Condon States
Kriti Gupta, Kajal Dhole, Aniket Patra, Swapan K. Ghosh, Alok Kumar Samanta
Experimental results for optically controlled electron-transfer reaction kinetics (ETRK) and nonequilibrium solvation dynamics (NESD) of Coumarin 480 in DMPC vesicle show their dependence on excitation wavelength λex. However, the celebrated Marcus theory and linear-response-theory-based approaches for ETRK and NESD, respectively, predict both of the processes to be independent of λex. The above said lacuna in these theories prompted us to develop a novel theory in 1D space, where the effect of innumerable Franck–Condon states is included through λex. The present theory not only sheds light on the origin of failure of the existing theories but also gives the correct trend for the effect of λex on ETRK and NESD. More importantly, the calculated results of NESD are in excellent agreement with the experimental results for different values of λex. The new theory will therefore advance the knowledge of scientific community on the dynamics of photoinduced nonequilibrium processes.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01938

DOI: 10.1021/acs.jpclett.7b01938

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.