3 years ago

Direct Observations of the Formation and Redox-Mediator-Assisted Decomposition of Li2O2 in a Liquid-Cell Li–O2 Microbattery by Scanning Transmission Electron Microscopy

Direct Observations of the Formation and Redox-Mediator-Assisted Decomposition of Li2O2 in a Liquid-Cell Li–O2 Microbattery by Scanning Transmission Electron Microscopy
Mingwei Chen, Akihiko Hirata, Jiuhui Han, Pan Liu, Takeshi Fujita, Gang Huang, Chen Hou, Chuchu Yang
Operando scanning transmission electron microscopy observations of cathodic reactions in a liquid-cell Li–O2 microbattery in the presence of the redox mediator tetrathiafulvalene (TTF) in 1.0 m LiClO4 dissolved dimethyl sulfoxide electrolyte are reported. It is found that the TTF addition does not obviously affect the discharge reaction for the formation of a solid Li2O2 phase. The coarsening of Li2O2 nanoparticles occurs via both conventional Ostwald ripening and nonclassical crystallization by particle attachment. During charging, the oxidation reaction at significantly reduced charge potentials mainly takes place at Li2O2/electrolyte interfaces and has obvious correspondence with the oxidized TTF+ distributions in the electric fields of the charged electrode. This study provides direct evidence that TTF truly plays a role in promoting the decomposition of Li2O2 as a soluble charge-transfer agent between the electrode and the Li2O2. Operando scanning transmission electron microscopy is used to investigate the cathodic reactions in a liquid-cell Li–O2 microbattery in the presence of redox mediators. The real-time and real-space observations provide experimental insights into the solution mechanisms of Li2O2 growth in a dimethyl-sulfoxide-based electrolyte and the working mechanisms of redox mediators as charge-transfer agents between the electrode surfaces and the solid Li2O2 phase.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201702752

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.