5 years ago

The Role of Rubidium in Multiple-Cation-Based High-Efficiency Perovskite Solar Cells

The Role of Rubidium in Multiple-Cation-Based High-Efficiency Perovskite Solar Cells
Michael Grätzel, Shaik Mohammed Zakeeruddin, Fabrizio Giordano, M. Ibrahim Dar, Neha Arora, Pankaj Yadav, Essa A. Alharbi
Perovskite solar cells (PSCs) based on cesium (Cs)- and rubidium (Rb)-containing perovskite films show highly reproducible performance; however, a fundamental understanding of these systems is still emerging. Herein, this study has systematically investigated the role of Cs and Rb cations in complete devices by examining the transport and recombination processes using current–voltage characteristics and impedance spectroscopy in the dark. As the credibility of these measurements depends on the performance of devices, this study has chosen two different PSCs, (MAFACs)Pb(IBr)3 (MA = CH3NH3+, FA = CH(NH2)2+) and (MAFACsRb)Pb(IBr)3, yielding impressive performances of 19.5% and 21.1%, respectively. From detailed studies, this study surmises that the confluence of the low trap-assisted charge-carrier recombination, low resistance offered to holes at the perovskite/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene interface with a low series resistance (Rs), and low capacitance leads to the realization of higher performance when an extra Rb cation is incorporated into the absorber films. This study provides a thorough understanding of the impact of inorganic cations on the properties and performance of highly efficient devices, and also highlights new strategies to fabricate efficient multiple-cation-based PSCs. The confluence of low trap-assisted charge-carrier recombination, low resistance offered to holes at the perovskite/2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene interface with a low series resistance (RS), and a lower value of charge storage, leads to the realization of higher photovoltaic performance when an extra cation (Rb) is incorporated into the perovskite films.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201701077

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.