5 years ago

Low Temperature Annealing Improves the Electrochromic and Degradation Behavior of Tungsten Oxide (WOx) Thin Films

Low Temperature Annealing Improves the Electrochromic and Degradation Behavior of Tungsten Oxide (WOx) Thin Films
Liam Trimby, Kunyapat Thummavichai, C. David Wright, Yanqiu Zhu, Yongde Xia, Nannan Wang
This research aims to understand the fundamental aspects of annealing on the electrochromic performance of tungsten oxides, using as-synthesized W18O49 substoichiometric bundled nanowires benchmarked against commercial WO3 nanoparticles. Linking detailed structural analyses with the electrochromic measurement results, we have investigated the electrochromic performance effects of low temperature annealing, up to 350 °C, on tungsten oxide (WOx) thin films, trying to establish the fundamental heat treatment–structure–performance loop. We have found that the annealing treatment at low temperature improved the optical modulation and long-term durability of the WOx thin films, without changing the structure and morphology of the as-synthesized samples. The 350 °C annealing was found to have the best stability improvement for the WO3 nanoparticle films during the electrochromic assessments, with a 4% improvement for Li+ intercalation and a 12% improvement for deintercalation, compared with the untreated WO3 samples. Further improvements have been achieved for the W18O49 nanowire thin films, with a stability improvement of 36% for Li+ intercalation and 60% for deintercalation against the as-prepared W18O49 nanowire samples during the electrochromic performance testing.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06300

DOI: 10.1021/acs.jpcc.7b06300

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.