5 years ago

Reservoir pressure analysis of aortic blood pressure: an in-vivo study at five locations in humans

Meredith, Ian T., Cameron, James D., Narayan, Om, Hughes, Alun D., Davies, Justin E., Parker, Kim H.
imageIntroduction: The development and propagation of the aortic blood pressure wave remains poorly understood, despite its clear relevance to major organ blood flow and potential association with cardiovascular outcomes. The reservoir pressure model provides a unified description of the dual conduit and reservoir functions of the aorta. Reservoir waveform analysis resolves the aortic pressure waveform into an excess (wave related) and reservoir (compliance related) pressure. The applicability of this model to the pressure waveform as it propagates along the aorta has not been investigated in humans. Methods: We analysed invasively acquired high-fidelity aortic pressure waveforms from 40 patients undergoing clinically indicated coronary catheterization. Aortic waveforms were measured using a solid-state pressure catheter at five anatomical sites: the ascending aorta, the transverse aortic arch, the diaphragm, the level of the renal arteries, and at the aortic bifurcation. Ensemble average pressure waveforms were obtained for these sites for each patient and analysed to obtain the reservoir pressure [Pr(t)] and the excess pressure [Px(t)] at each aortic position. Results: Systolic blood pressure increased at a rate of 2.1 mmHg per site along the aorta, whereas diastolic blood pressure was effectively constant. Maximum Pr decreased only slightly along the aorta (changing by −0.7 mmHg per site), whereas the maximum of Px increased from the proximal to distal aorta (+4.1 mmHg per site; P < 0.001). The time, relative to the start of systolic upstroke, of the occurrence of the maximum excess pressure did not vary along the aorta. Of the parameters used to derive the reservoir pressure waveform the systolic and diastolic rate constants showed divergent changes with the systolic rate constant (ks) decreasing and the diastolic rate constant (kd) increasing along the aorta. Conclusions: This analysis confirms the proposition that the magnitude of the calculated reservoir pressure waveform, despite known changes in aortic structure, is effectively constant throughout the aorta. A progressive increase of excess pressure accounts for the increase in pulse pressure from the proximal to distal aorta. The reservoir pressure rate constants seem to behave as arterial functional parameters. The accompanying decrease in ks and increase in kd are consistent with a progressive decrease in aortic compliance and increase in impedance. The reservoir pressure waveform therefore provides a model that might have utility in understanding the generation of central blood pressure and in specific cases might have clinical utility.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.