5 years ago

Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2

Matthews, Vance B., Hricova, Jana, Elliot, Rosemary H., Rudnicka, Caroline, Herat, Lakshini, Schlaich, Markus P.
imageBackground: The sympathetic nervous system (SNS) regulates glucose metabolism in various organs including the kidneys. The sodium glucose cotransporter 2 (SGLT2) mediates glucose reabsorption in renal proximal tubules and its inhibition has been shown to improve glucose control, cardiovascular and renal outcomes. We hypothesized that SNS-induced alterations of glucose metabolism may be mediated via regulation of SGLT2. Method: We used human renal proximal tubule cells to investigate the effects of noradrenaline on SGLT2 regulation. Mice fed a high-fat diet were oral gavaged with dapagliflozin and the expression of noradrenaline and tyrosine hydroxylase was measured in the kidney and heart. Results: Noradrenaline treatment resulted in a pronounced increase in SGLT2 and interleukin (IL)-6 expression in HK2 cells and promoted translocation of SGLT2 to the cell surface. In vivo, dapagliflozin treatment resulted in marked glucosuria in high-fat diet-fed mice. SGLT2 inhibition significantly reduced high-fat diet-induced elevations of tyrosine hydroxylase and noradrenaline in the kidney and heart. We also aimed to assess the levels of hypertension-related cytokines in the kidneys of our mice treated with and without dapagliflozin. Excitingly, we demonstrate that SGLT2 inhibition with dapagliflozin promoted a trend towards reduced tumour necrosis factor-alpha and elevated IL-1β protein levels in the kidney. Conclusion: Our in-vitro and in-vivo studies provide first evidence for an important cross-talk between the SNS and SGLT2 regulation that may not only account for SNS-induced alterations of glucose metabolism but potentially contribute to cardiovascular and renal protection observed with SGLT2 inhibitors.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.