4 years ago

Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice

Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice
Nicole Caduff, Donal McHugh, Anita Murer, Patrick Rämer, Ana Raykova, Vanessa Landtwing, Lisa Rieble, Christian W. Keller, Michael Prummer, Laurent Hoffmann, Janice K. P. Lam, Alan K. S. Chiang, Friedrich Raulf, Tarik Azzi, Christoph Berger, Tina Rubic-Schneider, Elisabetta Traggiai, Jan D. Lünemann, Michael Kammüller, Christian Münz
Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication after organ transplantation frequently associated with the Epstein-Barr virus (EBV). Immunosuppressive treatment is thought to allow the expansion of EBV-infected B cells, which often express all eight oncogenic EBV latent proteins. Here, we assessed whether HLA-A2 transgenic humanized NSG mice treated with the immunosuppressant FK506 could be used to model EBV-PTLD. We found that FK506 treatment of EBV-infected mice led to an elevated viral burden, more frequent tumor formation and diminished EBV-induced T cell responses, indicative of reduced EBV-specific immune control. EBV latency III and lymphoproliferation-associated cellular transcripts were up-regulated in B cells from immunosuppressed animals, akin to the viral and host gene expression pattern found in EBV-PTLD. Utilizing an unbiased gene expression profiling approach, we identified genes differentially expressed in B cells of EBV-infected animals with and without FK506 treatment. Upon investigating the most promising candidates, we validated sCD30 as a marker of uncontrolled EBV proliferation in both humanized mice and in pediatric patients with EBV-PTLD. High levels of sCD30 have been previously associated with EBV-PTLD in patients. As such, we believe that humanized mice can indeed model aspects of EBV-PTLD development and may prove useful for the safety assessment of immunomodulatory therapies. Transplant recipients are medicated with potent immunosuppressive drugs, like FK506, to prevent graft rejection by the host's adaptive immune system. Such treatments can lead to the emergence of post-transplant lymphoproliferative disorders (PTLD) driven by the Epstein-Barr virus (EBV), a ubiquitous human oncovirus that is usually kept under control by T cells. Here, we aimed to establish a model of human EBV-PTLD. To this end, we investigated immunodeficient mice harboring human immune system components reconstituted from human hematopoietic progenitor cells, termed humanized mice. This model enables both the infection of human B cells with EBV and the examination of effects of immunosuppressive compounds on lymphocytes in vivo. We found that EBV-associated lymphoproliferations in humanized mice express characteristic viral and human genes observed in EBV-PTLD patients and found similarities in the profiles of serum proteins known for their association with the disease. As such, we believe that EBV-infected humanized mice treated with the immunosuppressive drug FK506 can be used to model specific aspects of EBV-PTLD. Conversely, similar models may prove useful in the preclinical risk-assessment of novel compounds in relation to EBV-associated lymphoproliferation and our study may serve as a template of how one could approach such investigations.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.