5 years ago

Mechanism of As2O3-induced action potential prolongation and using hiPS-CMs to evaluate the rescue efficacy of drugs with different rescue mechanism.

Li F, Shi Y, Feng L, Li B, Liu Y, Yan M, Wang J
Arsenic trioxide (As2O3) has been verified as a breakthrough in the management of acute promyelocytic leukemia in recent decades. However, cardiotoxicity, especially long QT syndrome (LQTS) has become the most important issue during As2O3 treatment. The characterized mechanisms behind this adverse effect are inhibition of cardiac hERG channel trafficking and increase of cardiac calcium currents. In our study, we found a new pathway underlying As2O3-induced cardiotoxicity that As2O3 accelerates lysosomal degradation of hERG on plasma membrane after using brefeldin A (BFA) to block protein trafficking. Then we explored pharmacological rescue strategies on As2O3-induced LQTS, and found that 4 therapeutic agents exert rescue efficacy via 3 different pathways: fexofenadine and astemizole facilitate hERG trafficking via promotion of channel-chaperone formation after As2O3 incubation; ranolazine slows hERG degradation in the presence of As2O3; and resveratrol shows significant attenuation on calcium current increase triggered by As2O3. Moreover, we used human-induced pluripotent stem cell derived cardiomyocytes (hiPS-CMs) to evaluate the rescue effects of the above agents on As2O3-induced prolongation of action potential duration (APD) and demonstrated that fexofenadine and resveratrol significantly ameliorate the prolonged APD. These observations suggested that pharmacological chaperone like fexofenadine and resveratrol might have the potential to protect against the cardiotoxicity of As2O3.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28521025

DOI: PubMed:28521025

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.