5 years ago

Troglitazone inhibits bile acid amidation: a possible risk factor for liver injury.

Ogimura E, Deguchi J, Ito K, Bando K, Nakagawa T, Sekine S
Troglitazone and pioglitazone were developed as thiazolidinedione-type antidiabetes drugs, but only troglitazone was withdrawn from the markets due to severe liver injury. As both troglitazone and its sulfate metabolite are strong inhibitors of the bile salt export pump (BSEP), troglitazone-induced bile acid (BA) retention is thought to be one of the underlying mechanisms of liver injury. However, pioglitazone is also a strong BSEP inhibitor, indicating other mechanisms may also be involved in troglitazone-induced BA retention. Although retention of hydrophobic BAs (eg, chenodeoxycholic acid [CDCA]: a nonamidated BA) is known to cause hepatocyte injury, little is known about the hepatic conversion of nonamidated, hydrophobic BA species into less toxic hydrophilic BAs (eg, glycochenodeoxycholic acid: amidated BA) as a mechanism of drug-induced liver injury. In this study, we, therefore, investigated the effects of troglitazone and pioglitazone on BA amidation and the role of amidated BAs in troglitazone-associated BA-mediated hepatotoxicity. We also evaluated the intracellular BA composition of human hepatocytes treated with nonamidated BA species (CDCA or deoxycholic acid [DCA]) in the presence of troglitazone or pioglitazone. Amidation of CDCA and DCA was significantly inhibited by troglitazone (IC50: 5 and 3 µmol/l, respectively), but not pioglitazone. Moreover, treatment with troglitazone led to the retention of CDCA and DCA and decrease of glycine-amidation in hepatocytes. From these results, we suggest that troglitazone-induced liver injury might be caused by the accumulation of nonamidated BAs in hepatocytes due to inhibition of BA amidation.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28486596

DOI: PubMed:28486596

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.