3 years ago

Therapeutic concentrations of antidepressants inhibit pancreatic beta-cell function via mitochondrial complex inhibition.

Al-Ghafari A, Helaly ANM, Elmorsy E, Smith PA, Oehrle B, Hisab AS
Diabetes mellitus risk is increased by prolonged usage of antidepressants (ADs). Although various mechanisms are suggested for their diabetogenic potential, whether a direct effect of ADs on pancreatic β-cells is involved is unclear. We examined this idea for 3 ADs: paroxetine, clomipramine and, with particular emphasis, fluoxetine, on insulin secretion, mitochondrial function, cellular bioenergetics, KATP channel activity, and caspase activity in murine and human cell-line models of pancreatic β-cells. Metabolic assays showed that these ADs decreased the redox, oxidative respiration, and energetic potential of β-cells in a time and concentration dependent manner, even at a concentration of 100 nM, well within the therapeutic window. These effects were related to inhibition of mitochondrial complex I and III. Consistent with impaired mitochondrial function, lactate output was increased and insulin secretion decreased. Neither fluoxetine, antimycin nor rotenone could reactivate KATP channel activity blocked by glucose unlike the mitochondrial uncoupler, FCCP. Chronic, but not acute, AD increased oxidative stress and activated caspases, 3, 8, and 9. A close agreement was found for the rates of oxidative respiration, lactate output and modulation of KATP channel activity in MIN6 cells with those of primary murine cells; data that supports MIN6 as a valid model to study beta-cell bioenergetics. To conclude, paroxetine, clomipramine and fluoxetine were all cytotoxic at therapeutic concentrations on pancreatic beta-cells; an action suggested to arise by inhibition of mitochondrial bioenergetics, oxidative stress and induction of apoptosis. These actions help explain the diabetogenic potential of these ADs in humans.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28482088

DOI: PubMed:28482088

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.