5 years ago

Comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell co-culture model of the blood-brain barrier.

Chuang CY, Tsen CM, Huang CC, Huang YJ, Wu CC, Ho MY, Hsiao IL, Lin HC
Silver nanoparticles (AgNPs) enter the central nervous system through the blood-brain barrier (BBB). AgNP exposure can increase amyloid beta (Aβ) deposition in neuronal cells to potentially induce Alzheimer disease (AD) progression. However, the mechanism through which AgNPs alter BBB permeability in endothelial cells and subsequently lead to AD progression remains unclear. This study investigated whether AgNPs disrupt the tight junction proteins of brain endothelial cells, and alter the proteomic metabolism of neuronal cells underlying AD progression in a triple cell co-culture model constructed using mouse brain endothelial (bEnd.3) cells, mouse brain astrocytes (ALT), and mouse neuroblastoma neuro-2a (N2a) cells. The results showed that AgNPs accumulated in ALT and N2a cells because of the disruption of tight junction proteins, claudin-5 and ZO-1, in bEnd.3 cells. The proteomic profiling of N2a cells after AgNP exposure identified 298 differentially expressed proteins related to fatty acid metabolism. Particularly, AgNP-induced palmitic acid production was observed in N2a cells, which might promote Aβ generation. Moreover, AgNP exposure increased the protein expression of amyloid precursor protein (APP) and Aβ generation-related secretases, PSEN1, PSEN2, and BACE for APP cleavage in ALT and N2a cells, stimulated Aβ40 and Aβ42 secretion in the culture medium, and attenuated the gene expression of Aβ clearance-related receptors, P-gp and LRP-1, in bEnd.3 cells. Increased Aβ might further aggregate on the neuronal cell surface to enhance the secretion of inflammatory cytokines, MCP-1 and IL-6, thus inducing apoptosis in N2a cells. This study suggested that AgNP exposure might cause Aβ deposition and inflammation for subsequent neuronal cell apoptosis to potentially induce AD progression.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28460142

DOI: PubMed:28460142

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.