3 years ago

Muc1 knockout potentiates murine lung carcinogenesis involving an epiregulin-mediated EGFR activation feedback loop.

Chen W, Padilla MT, Xu X, Kim KC, Kato K, Tessema M, Leng S, Saxton B, Lin Y, Hutt J, Belinsky SA
Mucin 1 (MUC1) is a tumor antigen that is aberrantly overexpressed in various cancers, including lung cancer. Our previous in vitro studies showed that MUC1 facilitates carcinogen-induced EGFR activation and transformation in human lung bronchial epithelial cells (HBECs), which along with other reports suggests an oncogenic property for MUC1 in lung cancer. However, direct evidence for the role of MUC1 in lung carcinogenesis is lacking. In this study, we used the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced A/J mouse lung tumor model to investigate the effect of whole-body Muc1 knockout (KO) on carcinogen-induced lung carcinogenesis. Surprisingly, lung tumor multiplicity was significantly increased in Muc1 KO compared to wild-type (WT) mice. The EGFR/AKT pathway was unexpectedly activated, and expression of the EGFR ligand epiregulin (EREG) was increased in the lung tissues of the Muc1 KO compared to the WT mice. EREG stimulated proliferation and protected against cigarette smoke extract (CSE)-induced cytotoxicity in in vitro cultured human bronchial epithelial cells. Additionally, we determined that MUC1 was expressed in human fibroblast cell lines where it suppressed CSE-induced EREG production. Further, suppression of MUC1 cellular activity with GO-201 enhanced EREG production in lung cancer cells, which in turn protected cancer cells from GO-201-induced cell death. Moreover, an inverse association between MUC1 and EREG was detected in human lung cancer, and EREG expression was inversely associated with patient survival. Together, these results support a promiscuous role of MUC1 in lung cancer development that may be related to cell-type specific functions of MUC1 in the tumor microenvironment, and MUC1 deficiency in fibroblasts and malignant cells results in increased EREG production that activates the EGFR pathway for lung carcinogenesis.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28472347

DOI: PubMed:28472347

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.