5 years ago

Predicting Recidivism Among Internet Child Sex Sting Offenders Using Psychological Language Analysis.

Greidanus Romaneli M, Drouin M, Boyd RL
In this study, we examined the extent to which computerized linguistic analysis of natural language data from chat transcripts of Internet child sex stings predicted recidivism among 334 convicted offenders. Using the Linguistic Inquiry and Word Count (LIWC) program, we found that reoffenders (including simultaneous and previous offenders) differed significantly from nonreoffenders in measures of clout (a composite measure of social dominance) and percentage of words used in the following linguistic categories: cognitive processes, personal pronoun use, insight, time, and ingestion. In contrast, total word count and percentage of sexual words, two categories that might be assumed to be predictive of recidivism, were not significantly different between these two groups. These analyses help to develop a typology for an Internet sex reoffender as one who is dominant, nonequivocating, and likely to discuss meeting with their target and/or parents' schedules. Moreover, they highlight the importance of examining the functional aspects of language in forensic linguistic analysis, and exemplify the utility of computerized linguistic analyses in the courtroom.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28609206

DOI: PubMed:28609206

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.