Candidate odorant binding proteins and chemosensory proteins in the larval chemosensory tissues of two closely related noctuidae moths, <i>Helicoverpa armigera</i> and <i>H</i>. <i>assulta</i>
by Hetan Chang, Dong Ai, Jin Zhang, Shuanglin Dong, Yang Liu, Guirong Wang
In order to acquire enough nutrients and energy for further development, larvae need to invest a large portion of their sensory equipments to identify food sources. Yet, the molecular basis of odor-driven behavior in larvae has been poorly investigated. Information on olfactory genes, particularly odorant binding proteins (OBPs) and chemosensory proteins (CSPs) which are involved in the initial steps of olfaction is very scarce. In this study, we have identified 26 OBP and 21 CSP genes from the transcriptomes of Helicoverpa armigera larval antennae and mouthparts. A comparison with the 34 OBP and 18 CSP genes of the adult antenna, revealed four novel OBPs and seven novel CSPs. Similarly, 27 OBPs (six novel OBPs) and 20 CSPs (6 novel CSPs) were identified in the transcriptomes of Helicoverpa assulta larval antennae and mouthparts. Tissue-specific profiles of these soluble proteins in H. armigera showed that 6 OBP and 4 CSP genes are larval tissue-specific, 15 OBPs and 13 CSPs are expressed in both larvae and adult, while the rest are adult- specific. Our data provide useful information for functional studies of genes involved in larval foraging.Publisher URL: http://journals.plos.org/plosone/article
DOI: 10.1371/journal.pone.0179243
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.