Design of short peptides to block BTLA/HVEM interactions for promoting anticancer T-cell responses
by Marta Spodzieja, Sławomir Lach, Justyna Iwaszkiewicz, Valérie Cesson, Katarzyna Kalejta, Daniel Olive, Olivier Michielin, Daniel E. Speiser, Vincent Zoete, Laurent Derré, Sylwia Rodziewicz-Motowidło
Antibody based immune-checkpoint blockade therapy is a major breakthrough in oncology, leading to clinical benefit for cancer patients. Among the growing family of inhibitory receptors, the B and T lymphocyte attenuator (BTLA), which interacts with herpes virus entry mediator (HVEM), is a promising target for immunotherapy. Indeed, BTLA inhibits T-cell proliferation and cytokine production. The crystal structure of the BTLA/HVEM complex has shown that the HVEM(26–38) fragment is directly involved in protein binding. We designed and analyzed the capacity of several analogs of this fragment to block the ligation between BTLA and HVEM, using competitive ELISA and cellular assay. We found that the HVEM(23–39) peptide can block BTLA/HVEM ligation. However, the blocking ability was due to the Cys encompassed in this peptide and that even free cysteine targeted the BTLA protein and blocked its interaction with HVEM. These data highlight a Cys-related artefact in vitro, which should be taken in consideration for future development of BTLA/HVEM blocking compounds.Publisher URL: http://journals.plos.org/plosone/article
DOI: 10.1371/journal.pone.0179201
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.