5 years ago

Designed Heme-Cage β-Sheet Miniproteins

Designed Heme-Cage β-Sheet Miniproteins
Xiangyang Wu, Surajit Bhattacharjya, Areetha D'Souza, Edwin Kok Lee Yeow
The structure and function of naturally occurring proteins are governed by a large number of amino acids (≥100). The design of miniature proteins with desired structures and functions not only substantiates our knowledge about proteins but can also contribute to the development of novel applications. Excellent progress has been made towards the design of helical proteins with diverse functions. However, the development of functional β-sheet proteins remains challenging. Herein, we describe the construction and characterization of four-stranded β-sheet miniproteins made up of about 19 amino acids that bind heme inside a hydrophobic binding pocket or “heme cage” by bis-histidine coordination in an aqueous environment. The designed miniproteins bound to heme with high affinity comparable to that of native heme proteins. Atomic-resolution structures confirmed the presence of a four-stranded β-sheet fold. The heme–protein complexes also exhibited high stability against thermal and chaotrope-induced unfolding. Stripped to the bone: A set of four-stranded β-sheet peptides designed to bind heme within an extended pocket or “heme cage” were found to show heme-binding affinity comparable to that of their native counterparts (see picture). The resulting peptide–heme complexes were highly resilient to thermal and chemical denaturation.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201702472

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.