3 years ago

The influence of collagen membrane and autogenous bone chips on bone augmentation in the anterior maxilla: a preclinical study

Simone F. M. Janner, Guy Huynh-Ba, Daniel Buser, Archie A. Jones, Vivianne Chappuis, David L. Cochran, Dieter D. Bosshardt
Objectives To evaluate the effect of a resorbable collagen membrane and autogenous bone chips combined with deproteinized bovine bone mineral (DBBM) on the healing of buccal dehiscence-type defects. Material and methods The second incisors and the first premolars were extracted in the maxilla of eight mongrels. Reduced diameter, bone-level implants were placed 5 weeks later. Standardized buccal dehiscence-type defects were created and grafted at implant surgery. According to an allocation algorithm, the graft composition of each of the four maxillary sites was DBBM + membrane (group D + M), autogenous bone chips + DBBM + membrane (group A + D + M), DBBM alone (group D) or autogenous bone chips + DBBM (group A + D). Four animals were sacrificed after 3 weeks of healing and four animals after 12 weeks. Histological and histomorphometric analyses were performed on oro-facial sections. Results The pattern of bone formation and resorption within the grafted area showed high variability among the same group and healing time. The histomorphometric analysis of the 3-week specimens showed a positive effect of autogenous bone chips on both implant osseointegration and bone formation into the grafted region (P < 0.05). The presence of the collagen membrane correlated with greater bone formation around the DBBM particles and greater bone formation in the grafted region after 12 weeks of healing (P < 0.05). The oro-facial width of the augmented region at the level of the implant shoulder was significantly reduced in cases where damage of the protection splints occurred in the first week of healing (P < 0.05). Conclusions The addition of autogenous bone chips and the presence of the collagen membrane increased bone formation around DBBM particles. Wound protection from mechanical noxa during early healing may be critical for bone formation within the grafted area.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/clr.12996

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.