4 years ago

Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites

Pierre Drion, Peter Schüpbach, Miljana Bacevic, Pierre Layrolle, France Lambert, Eric Rompen
Aims The primary objective of this study was to compare the in vivo performance, namely in terms of quantity of newly formed bone and bone-to-material contact (osteoconductivity), of three hydroxyapatite-based biomaterials (HA) of different origins (natural or synthetic) or manufacturing process in a sinus lift model in rabbits. The secondary objective was to correlate the findings with the physical and topographical characteristics of the biomaterials. Materials and Methods Two bovine HA manufactured with different processes (bovine hydroxyapatites [BHA] and cuttlebone hydroxyapatite [CBHA]) and a synthetic hydroxyapatite (SHA) sintered at high temperature were characterised with scanning electronic microscopy (SEM) and the measurement of specific surface area (BET). The materials were implanted in a sinus lift model in rabbits; histological and histomorphometric evaluation using non-decalcified sections was performed at 1, 5 and 12 weeks after implantation. Results The studied biomaterials displayed a different surface topography. The two natural HA displayed significantly higher bone quantities (P = 0.0017; BHA vs. SHA, P = 0.0018 and CBHA vs. SHA, P = 0.033) at 5 and 12 weeks compared to the synthetic one (SHA). Moreover, the osteoconductivity (bone-to-material contact) was significantly higher in the BHA group compared to the two other groups (P = 0.014; BHA vs. SHA, P = 0.023 and BHA vs. CBHA, P = 0.033). Conclusion HA-based biomaterials from diverse origins and manufacturing processes displayed different topographical characteristics. This may have influenced different regenerated bone architecture observed; more bone was found with natural HA compared to the synthetic one, and significantly higher bone-to-material contacts were found with BHA.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/clr.12986

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.