3 years ago

Fracture resistance of implant-supported screw-retained zirconia-based molar restorations

Junichi Honda, Hideo Matsumura, Kohei Taguchi, Futoshi Komine, Markus B. Blatz, Shingo Kamio
Objectives The objective of this in vitro study was to investigate fracture loads of screw-retained zirconia-based molar restorations (hybrid abutment crown) fabricated with different restorative materials and designs. Material and methods Forty-four screw-retained zirconia-based molar restorations were fabricated on dental implants and divided into four groups (n = 11): porcelain-layered zirconia-based restorations (PLZ), indirect composite-layered zirconia-based restorations (ILZ), metal–ceramic restorations (MC), and monolithic zirconia restorations (MONO). The zirconia-based restorations in the PLZ, ILZ, and MONO groups were adhesively bonded on implant abutments with a dual-polymerized resin material. All restorations were tightened on implant bodies with titanium screws and were tested for fracture resistance. The Kruskal–Wallis test and Steel–Dwass test were used to evaluate differences in fracture loads (α = 0.05). Results As compared with the other groups, the MONO specimens had a significantly higher mean fracture resistance (7.54 kN); no significant differences were found among the PLZ (1.96 kN), ILZ (1.80 kN), and MC (1.45 kN) groups (P > 0.05). For the PLZ, ILZ, and MC groups, all specimens fractured within the layering materials. In contrast, the fracture mode for the MONO group was complete fracture of the restorations. Conclusions All restorations withstood the masticatory forces. Fracture loads were significantly higher for screw-retained implant-supported monolithic zirconia restorations than for screw-retained bilayered restorations. For the screw-retained bilayered zirconia-based restorations, the fracture resistance of ILZ restorations was comparable to that of PLZ restorations and MC restorations.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/clr.12926

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.