5 years ago

Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism

Estimation of cerebral anaerobic metabolism in survivors and non-survivors after cardiac arrest. Methods We performed an observational study in twenty comatose patients after cardiac arrest and 19 healthy control subjects. We measured mean flow velocity in the middle cerebral artery (MFVMCA) by transcranial Doppler. Arterial and jugular blood samples were used for calculation of the jugular venous-to-arterial CO2/arterial to-jugular venous O2 content difference ratio. Results After cardiac arrest, MFVMCA increased from 26.0[18.6–40.4]cm/sec on admission to 63.9[48.3–73.1]cm/sec after 72h (p<0.0001), with no significant differences between survivors and non-survivors (p=0.4853). The MFVMCA in controls was 59.1[52.8–69.0]cm/sec. The oxygen extraction fraction (O2EF) was 38.9[24.4–47.7]% on admission and decreased significantly to 17.3[12.1–26.2]% at 72h (p<0.0001). The decrease in O2EF was more pronounced in non-survivors (p=0.0173). O2EF in the control group was 35.4[32.4–38.7]%. The jugular bulb-arterial CO2 to arterial-jugular bulb O2 content difference ratio was >1 at all time points after cardiac arrest and did not change during admission, with no differences between survivors and non-survivors. Values in cardiac arrest patients were similar to those in normal subjects. Conclusions In this study, low CBF after cardiac arrest is not associated with anaerobic metabolism. Hypoperfusion appears to be the consequence of a decrease of neuronal functioning and metabolic needs. Alternatively, hypoperfusion may decrease cerebral metabolism. Subsequently, metabolism increases in survivors, consistent with resumption of neuronal activity, whereas in non-survivors lasting low metabolism reflects irreversible neuronal damage.

Publisher URL: www.sciencedirect.com/science

DOI: S030095721730552X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.