5 years ago

Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition.

Wolf AR, Gall W, Adachi Y, Cohen DE, Matthews TJ, Subramanian S, Sales VM, Patti ME, Isganaitis E, Sharma A, Gordon JI, Chen M, Ma H, Kulik W, Griffin NW
Prenatal undernutrition and low birth weight are associated with risk of type 2 diabetes and obesity. Prenatal caloric restriction results in low birth weight, glucose intolerance, obesity, and reduced plasma bile acids (BAs) in offspring mice. Because BAs can regulate systemic metabolism and glucose homeostasis, we hypothesized that BA supplementation could prevent diet-induced obesity and glucose intolerance in this model of developmental programming. Pregnant dams were food restricted by 50% from gestational days 12.5 to 18.5. Offspring of both undernourished (UN) and control (C) dams given unrestricted diets were weaned to high-fat diets with or without supplementation with 0.25% w/w ursodeoxycholic acid (UDCA), yielding four experimental groups: C, UN, C + UDCA, and UN + UDCA. Glucose homeostasis, BA composition, liver and intestinal gene expression, and microbiota composition were analyzed in the four groups. Although UDCA supplementation ameliorated diet-induced obesity in C mice, there was no effect in UN mice. UDCA similarly lowered fasting insulin, and improved glucose tolerance, pyruvate tolerance, and liver steatosis in C, but not UN, animals. BA composition differed significantly, and liver and ileal expression of genes involved in BA metabolism (Cyp7b1, Shp) were differentially induced by UDCA in C vs UN animals. Bacterial taxa in fecal microbiota correlated with treatment groups and metabolic parameters. In conclusion, prenatal undernutrition alters responsiveness to the metabolic benefits of BA supplementation, with resistance to the weight-lowering and insulin-sensitizing effects of UDCA supplementation. Our findings suggest that BA metabolism may be a previously unrecognized contributor to developmentally programmed diabetes risk.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28637315

DOI: PubMed:28637315

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.