5 years ago

Tools for the Precision Medicine Era: How to Develop Highly Personalized Treatment Recommendations From Cohort and Registry Data Using Q-Learning.

Moodie EEM, Alousi A, Couriel D, Logan B, Hemmer M, Arora M, Wang T, Last M, Lachance S, Pidala J, Spellman S, Krakow EF
Q-learning is a method of reinforcement learning that employs backwards stagewise estimation to identify sequences of actions that maximize some long-term reward. The method can be applied to sequential multiple-assignment randomized trials to develop personalized adaptive treatment strategies (ATSs)-longitudinal practice guidelines highly tailored to time-varying attributes of individual patients. Sometimes, the basis for choosing which ATSs to include in a sequential multiple-assignment randomized trial (or randomized controlled trial) may be inadequate. Nonrandomized data sources may inform the initial design of ATSs, which could later be prospectively validated. In this paper, we illustrate challenges involved in using nonrandomized data for this purpose with a case study from the Center for International Blood and Marrow Transplant Research registry (1995-2007) aimed at 1) determining whether the sequence of therapeutic classes used in graft-versus-host disease prophylaxis and in refractory graft-versus-host disease is associated with improved survival and 2) identifying donor and patient factors with which to guide individualized immunosuppressant selections over time. We discuss how to communicate the potential benefit derived from following an ATS at the population and subgroup levels and how to evaluate its robustness to modeling assumptions. This worked example may serve as a model for developing ATSs from registries and cohorts in oncology and other fields requiring sequential treatment decisions.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28472335

DOI: PubMed:28472335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.