3 years ago

Genetic Deletion of Tumor Necrosis Factor-α Attenuates Amyloid-β Production and Decreases Amyloid Plaque Formation and Glial Response in the 5XFAD Model of Alzheimer's Disease.

Zenelak S, Georgopoulos S, Tzara O, Paouri E
Increasing evidence suggests that neuroinflammation comprises a major characteristic of Alzheimer's disease (AD). Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine implicated in neurodegenerative diseases including AD, and has been proposed as a potent therapeutic target for AD. Although a number of studies focusing on pharmacological or genetic manipulation of TNF-α and its receptors in AD mice have provided significant knowledge regarding the role of TNF-α signaling pathway in the pathogenesis of AD, the consequences of TNF-α genetic deletion have not been thoroughly examined. Here, we focused on the effect of TNF-α deficiency on the amyloid phenotype of 5XFAD mice. Our analysis revealed that amyloid deposition, amyloid-β (Aβ) levels, and AβPP-carboxyterminal fragments are significantly reduced in the brains of 5XFAD/TNF-α-/- mice compared to the 5XFAD/TNF-α+/+. We found decreased protein levels of β- and α-secretases in the 5XFAD/TNF-α-/- brains, suggesting for an effect of TNF-α on AβPP processing and Aβ generation. We also show for the first time that TNF-α affects PS1in vivo, as 5XFAD mice lacking TNF-α expression display reduced PS1-carboxyterminal fragments implying for diminished PS1 activity. Moreover, TNF-α deficiency decreases microglial and astrocytic activation and significantly restricts the phagocytic activity of macrophages against Aβ, supporting for reduced responsiveness of phagocytes toward Aβ. Overall, our results reveal that TNF-α genetic deletion in 5XFAD mice attenuates amyloid plaque formation by lowering Aβ generation through the reduction of functionally active PS1 and β-secretase rather than promoting Aβ clearance by phagocytic cells. Our data further suggest TNF-α inhibition as a therapeutic approach for AD.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28826177

DOI: PubMed:28826177

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.