5 years ago

Classification of Alzheimer's Disease and Prediction of Mild Cognitive Impairment Conversion Using Histogram-Based Analysis of Patient-Specific Anatomical Brain Connectivity Networks.

Matsuda H, Maikusa N, Anbarjafari G, Japanese-Alzheimer’s Disease Neuroimaging Initiative, Demirel H, Daneshmand M, Beheshti I
In this study, we investigated the early detection of Alzheimer's disease (AD) and mild cognitive impairment (MCI) conversion to AD through individual structural connectivity networks using structural magnetic resonance imaging (sMRI) data. In the proposed method, the cortical morphometry of individual gray matter images were used to construct structural connectivity networks. A statistical feature generation approach based on histogram-based feature generation procedure was proposed to represent a statistical-pattern of connectivity networks from a high-dimensional space into low-dimensional feature vectors. The proposed method was evaluated on numerous samples including 61 healthy controls (HC), 42 stable-MCI (sMCI), 45 progressive-MCI (pMCI), and 83 AD subjects at the baseline from the J-ADNI data-set using support vector machine classifier. The proposed method yielded a classification accuracy of 84.17%, 70.38%, and 61.05% in identifying AD/HC, MCIs/HCs, and sMCI/pMCI, respectively. The experimental results show that the proposed method performed in a comparable way to alternative methods using MRI data.

Publisher URL: https://www.ncbi.nlm.nih.gov/pubmed/28800325

DOI: PubMed:28800325

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.