4 years ago

On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts

On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts
Getaneh Diress Gesesse, Alicia Gomis-Berenguer, Marie-France Barthe, Conchi O. Ania

This study provides a critical analysis on the use of diffuse reflectance spectroscopy and Tauc equation to estimate the optical energy band gap of semiconductor/carbon composites and amorphous porous carbons. Determination of the energy gap from diffuse reflectance is strongly dependent on the analyst's experience, due to uncertainties related to establish the adequate range to fit the experimental data to Tauc equation, and to identify the type of electronic transitions. Furthermore, its application to strong light absorbing or multiphase materials with several absorbing components is not straightforward, due to the appearance of various curvatures/linear ranges. For such, reporting the linear fitting range used in the diffuse reflectance spectra is recommended to avoid miscalculation of a gap value. For materials absorbing in the visible range (e.g., displaced onset in Tauc representation), a double-linear fitting must be used in the extrapolation of [F(R∞)hv]1/n to avoid underestimation of Eg values. For amorphous porous carbons, different optical responses were obtained from the diffuse reflectance spectra recorded upon dilution with a non-absorbing matrix. The application of Tauc equation (indirect transitions) to data rendered band gap values ranging between 1.5-2.3 eV for fourteen carbons, which are in agreement with those reported for these materials.

Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.