4 years ago

Luminescent Carbon Dot Mimics Assembled on DNA

Luminescent Carbon Dot Mimics Assembled on DNA
Eric T. Kool, Anna M. Kietrys, Hyukin Kwon, Ke Min Chan, Wang Xu
Nanometer-sized fragments of carbon in the form of multilayer graphene (“carbon dots”) have been under highly active study for applications in imaging. While offering advantages of low toxicity and photostability, such nanomaterials are inhomogeneous and have limited wavelengths of emission. Here we address these issues by assembling luminescent aromatic C16–C38 hydrocarbons together on a DNA scaffold in homogeneous, soluble molecular compounds. Monomer deoxyribosides of five different aromatic hydrocarbons were synthesized and assembled into a library of 1296 different tetramer compounds on PEG-polystyrene beads. These were screened for photostability and a range of emission colors using 365 nm excitation, observing visible light (>400 nm) emission. We identified a set of six oligomers (DNA-carbon assemblies, DNA-CAs) with exceptional photostability that emit from 400 to 680 nm in water, with Stokes shifts of up to 110 nm, quantum yields ranging from 0.01 to 0.29, and fluorescence lifetimes from 3 to 42 ns. In addition, several of these DNA-CAs exhibited white emission in aqueous solution. The molecules were used in multispectral cell imaging experiments and were taken up into cells passively. The results expand the range of emission properties that can be achieved in water with all-hydrocarbon chromophores and establish the use of the DNA scaffold to arrange carbon layers in homogeneous, rapidly synthesized assemblies.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07420

DOI: 10.1021/jacs.7b07420

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.