3 years ago

Adsorption and Photodesorption of CO from Charged Point Defects on TiO2(110)

Adsorption and Photodesorption of CO from Charged Point Defects on TiO2(110)
Rentao Mu, Greg A. Kimmel, Zdenek Dohnálek, Zhi-Tao Wang, Arjun Dahal, Igor Lyubinetsky, Nikolay G. Petrik
The adsorption and photochemistry of CO on rutile TiO2(110) are studied with scanning tunneling microscopy (STM), temperature-programmed desorption, and angle-resolved photon-stimulated desorption (PSD) at low temperatures. Site occupancies, when weighted by the concentration of each kind of adsorption site on the reduced surface, show that the adsorption probability is the highest for the bridging oxygen vacancies (VO). The probability distribution for the different adsorption sites corresponds to very small differences in CO adsorption energies (<0.02 eV). UV irradiation stimulates diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bimodal angular distribution, indicating some scattering from the surface, which also leads to photostimulated diffusion. Hydroxylation of VO’s does not significantly change the CO PSD yield or the angular distribution, which suggests that photodesorption can be initiated by recombination of photogenerated holes with excess electrons localized near the charged point defect (either VO or bridging hydroxyl).

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b02052

DOI: 10.1021/acs.jpclett.7b02052

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.