5 years ago

On-Demand Drug Release from Dual-Targeting Small Nanoparticles Triggered by High-Intensity Focused Ultrasound Enhanced Glioblastoma-Targeting Therapy

On-Demand Drug Release from Dual-Targeting Small Nanoparticles Triggered by High-Intensity Focused Ultrasound Enhanced Glioblastoma-Targeting Therapy
Qiang Pang, Kai Jin, Lei Yu, Shun Shen, Zhiqiang Yan, Zhiqing Pang, Xiaoyan Zhu, Zimiao Luo, Xinguo Jiang, Ting Jiang
Glioblastoma is one of the most challenging and intractable tumors with the difficult treatment and poor prognosis. Unsatisfactory traditional systemic chemotherapies for glioblastoma are mainly attributed to the insufficient and nonspecific drug delivery into the brain tumors as well as the incomplete drug release at the tumor sites. Inspired by the facts that angiopep-2 peptide is an acknowledged dual-targeting moiety for brain tumor-targeting delivery and high-intensity focused ultrasound (HIFU) is an ideal trigger for drug release with an ultrahigh energy and millimeter-sized focus ability, in the present study, a novel HIFU-responsive angiopep-2-modified small poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticle (NP) drug delivery system holding doxorubicin/perfluorooctyl bromide (ANP-D/P) was designed to increase the intratumoral drug accumulation, further trigger on-demand drug release at the glioblastoma sites, and enhance glioblastoma therapy. It was shown that the ANP-D/P was stable and had a small size of 41 nm. The angiopep-2 modification endowed the ANP-D/P with improved blood–brain barrier transportation and specific accumulation in glioblastoma tissues by 17 folds and 13.4 folds compared with unmodified NPs, respectively. Under HIFU irradiation, the ANP-D/P could release 47% of the drug within 2 min and induce the apoptosis of most tumor cells. HIFU-triggered instantaneous drug release at the glioblastoma sites eventually enabled the ANP-D/P to achieve the strongest antiglioblastoma efficacy with the longest median survival time (56 days) of glioblastoma-bearing mice and the minimum vestiges of tumor cells in the pathological slices among all groups. In conclusion, the HIFU-responsive ANP-D/P in this study provided a new way for glioblastoma therapy with a great potential for clinical applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b10866

DOI: 10.1021/acsami.7b10866

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.