5 years ago

Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC

Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC
Xiao Cheng, Zhengyang Zhou, Chao Liu, Jian He, Shuangshuang Ren, Peichen Zhao, Leiying Miao, Wei Huang, Mengkun Chen
The development of agents for noninvasive photothermal/photodynamic therapies (PTT/PDT) against cancer remains challenging because most PTT agents cause side effects on normal tissues due to their high cytotoxicity and slow metabolism rate. We successfully synthesized an organic compound (C3), encapsulated in PEG-PCL with indocyanine green (ICG), to form hybrid nanoparticles (PEG-PCL-C3-ICG NPs) for use as a new PPT/PDT agent to treat cancer with a single irradiation. Compared with conventional PPT agents, such as Au nanorods, C3 showed better photothermal conversion stability, lower cytotoxicity and a faster metabolic rate, ensuring promising PTT efficacy in eliminating tumors during in vivo application, while ICG was used as a PDT agent. With 808 nm laser irradiation at tumor sites, the PEG-PCL-C3-ICG NPs were able to simultaneously produce hyperthermia through C3 and produce reactive oxygen species as well as a fluorescence-guided effect through ICG to kill oral squamous cell carcinoma (OSCC) cells. The combination of these hypotoxic and metabolic hybrid nanoparticles with radiation therapy has potential for the future treatment of OSCC.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09522

DOI: 10.1021/acsami.7b09522

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.