4 years ago

New and Efficient Electrocatalyst for Hydrogen Production from Water Splitting: Inexpensive, Robust Metallic Glassy Ribbons Based on Iron and Cobalt

New and Efficient Electrocatalyst for Hydrogen Production from Water Splitting: Inexpensive, Robust Metallic Glassy Ribbons Based on Iron and Cobalt
Wei Jiang, Qingzhuo Hu, Bo Zhang, Jili Wu, Fabao Zhang
Efficient, stable electrocatalysts are required to promote the hydrogen evolution reaction (HER) to obtain hydrogen as a clean, sustainable fuel via water splitting. In the present work, ribbons of the metallic glass Fe40Co40P13C7 were produced using a conventional melt-spinning technique and assessed as electrocatalysts for HER. In 0.5 M H2SO4, these ribbons generated an overpotential of 118 mV at a current density of 10 mA cm–2. This overpotential remained essentially constant over 20 h under these conditions. On the basis of the excellent properties, these glassy ribbons represent a new type of highly active, robust HER catalyst suitable for practical applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09222

DOI: 10.1021/acsami.7b09222

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.