3 years ago

Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells

Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells
David Aili, Shanfu Lu, Jian Liu, Jin Zhang, Qingfeng Li, Maria Forsyth, Roland De Marco, San Ping Jiang, Yan Xiang, Haijin Zhu
As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH2–HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH2-meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH in the NH2-meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA–NH2–HMS nanoparticles are dispersed in the poly(ether sulfone)–polyvinylpyrrolidone (PES–PVP) matrix, forming a hybrid PWA–NH2–HMS/PES–PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA–NH2–HMS showed an enhanced proton conductivity of 0.175 S cm–1 and peak power density of 420 mW cm–2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH2–HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09591

DOI: 10.1021/acsami.7b09591

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.